前の問題をより汎用性を高めるために、例外があるかどうか考える。
整数3と整数2の加法、減法、乗法、除法を表現することを考える:
表現1
a<-3 整数値を入れる箱を用意しaというラベルを貼る。そして3を入れる
b<-2 整数値を入れる箱を用意しbというラベルを貼る。そして2を入れる
a+b? ラベルaの箱にある整数とラベルbの箱にある整数の和は?
a-b?
aXb?
a÷b?
bの値が0であるときである。このときa÷bは問題となる。それを指摘し計算はしないとしよう。
表現2
a<-3 整数値を入れる箱を用意しaというラベルを貼る。そして3を入れる
b<-2 整数値を入れる箱を用意しbというラベルを貼る。そして2を入れる
a+b? ラベルaの箱にある整数とラベルbの箱にある整数の和は?
a-b?
aXb?
bが0ならば
bが0です!
そうでなければ
a÷b?
表現2では例外の扱いもしてありより汎用性が高いものとなっている。